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Bell's inequalities are always derived assuming that local hidden-variable 
theories give a set of positive-definite probabilities for detecting a particle with 
a given spin orientation. The usual claim is that quantum mechanics, by its very 
nature, cannot produce a set of such probabilities. We show that this is not the 
case if one allows for generalized (nonpositive-definite) "master probability 
distributions." The master distributions give the usual quantum mechanical 
violation of Bell's inequalities. ConseqUences for the interpretation of quantum 
mechanics are discussed. 

1. INTRODUCTION 

Since their appearance, Bell's (1964) inequalities have been the subject 
of hundreds, if not thousands, of papers. Certainly it can be said that Bell's 
(1964) work has been the most influential on the interpretation of quantum 
mechanics since the famous argument of Einstein, Podolsky, and Rosen 
(1935). 

As is well known, Einstein, Podolsky, and Rosen (EPR) criticized 
quantum mechanics as being an incomplete description of the world because 
it violated the so-called "criterion of physical reality." The criterion of 
physical reality, in turn, relied on the special-relativistic assumption that no 
signal can propagate faster than the speed of light: no two regions that are 
separated from each other by a spacelike interval can causally influence one 
another. This assumption is usually referred to as the "locality condition." 
Because in the quantum mechanical thought experiment envisaged by EPR 
(see next section) an observer in one region can apparently determine the 
outcome of an experiment in a second region that is separated from it 
by a spacelike interval, then either the locality condition is incorrect or 
quantum mechanics is not a complete description of reality. 
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If one takes the stand that the locality condition must remain firm (as 
did EPR), then the presence of "local hidden variables," which must be 
added to quantum mechanics to make it complete, becomes a real 
possibility. Bell's contribution was to show that the locality condition leads 
to a set of definite mathematical predictions (the Bell inequalities) which 
violate the predictions of quantum mechanics. Experiments have repeatedly 
upheld quantum mechanics, thereby implying that the locality condition is 
incorrect. 

That no two causally disjoint regions can influence each other is a 
principle firmly embedded in the consciousness of most physicists. It is 
therefore natural that Bell's theorem has received many elaborations in the 
literature and that many words have been devoted to its implications. As 
representative of the words we may take those found in the review by 
Clauser and Shimony (1978): "The conclusions [-of Bell's theorem] are 
philosophically startling: either one must totally abandon the realistic 
philosophy of most working scientists, or dramatically revise our concept 
of spacetime." 

In this article we propose another "out." If one examines the various 
proofs of Bell's theorem [-see Clauser and Shimony (1978) for a partial 
list] the locality condition appears in various guises: the assumption of 
"philosophical realism" (Clauser and Shimony, 1973), "local realism" 
(Braunstein and Davies, 1989), "counterfactual definiteness" (Clauser and 
Shimony, 1978; Stapp, 1979), rejection of "action at a distance" (Clauser 
and Shimony, 1973), "principle of separability" (d'Espagnat, 1976), and the 
like. Mathematically, however, the crucial assumption in all the proofs is 
that the locality condition introduces a certain set of a priori, positive- 
definite probabilities P that are not predicted by quantum mechanics. [-At 
first sight, Stapp's (1979) and (1985) proofs appear not to rely on any 
statement of probabilities. However, the equivalence theorem cited in 
Section 3.8 of Clauser and Shimony (1978) shows that Stapp's assumptions 
are equivalent to the assumption of the probabilities P.] 

We show in Section 3 that, if one relaxes the requirement that the 
probabilities be positive definite, quantum mechanics indeed predicts a set 
of "a priori" probabilities. These probabilities are meaningful in the sense 
that they give the standard quantum mechanical results in physical 
circumstances, including the usual violation of Bell's inequalities. If one 
chooses to accept these p~obabilities as meaningful, then the probabilities 
arising from the assumption of hidden variables can be regarded as merely 
the "wrong answer" to a quantum mechanical problem, i.e., as merely the 
result of choosing the wrong set of~probabilities. We illustrate these 
concepts first for a spin-l/2 system. 
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2. SPIN 1/2 

As already mentioned, many versions of Bell's theorem have appeared 
in the literature. The simplest we have seen is Wigner's model as presented 
by Sakurai (1985). For  our purposes it is sufficient to follow this proof; the 
reader is referred to Sakurai's text for further details. 

We consider the usual spin-singlet system due to Bohm (1951) in 
which two spin-l/2 particles with total angular momentum equal to zero 
each pass through a Stern-Gerlach-type detector that is separated from a 
second identical detector by a spacelike interval. We also assume that 
measurements of the spin of each particle may be made along three unit 
vectors a, b, c, such that if the first detector records $1 �9 a as "up" (where $1 
refers to the spin of the first particle), then the second detector must record 
S2"a as "down." We denote up and down by + and - ,  respectively. 

Quantum mechanics asserts that each particle emitted from a source 
has no definite spin but is in a superposition of states. The hidden variables 
approach assumes, on the contrary, that the particles have a definite spin. 
For instance, a certain fraction of the particles measured by detector 1 will 
be of the type (a +,  b - ,  c -  ). (The detector, of course, will only measure 
the spin along one axis.) It is not important what fraction of the particles 
are of this type; one merely requires that some definite fraction manifest 
spins in those directions. To ensure zero total angular momentum, when 
detector 1 measures a particle of the above type, detector 2 must measure 
a particle of type ( a - ,  b +,  c + ). There will be eight such spin combina- 
tions (see Table I), so the number of each particle type may be labeled 
N 1 . . .  Ns. 

Assuming the N to be nonnegative, they must satisfy inequalities of the 
form: 

N3 + N5 ~< (N2 + Ns) + (N3 + N7) (1) 

From Table I one sees that N 3 + N5 represents the total number of particle 
pairs for which detector 1 measures S l " a  to be + and detector 2 measures 
$2" b to be + ,  etc. If P ( a + ,  b+  ) denotes the probability that ($1-a = +, 
$2" b = +), then clearly 

N3 q- N5 
P(a  + ,  b + ) - ~ - ~ - - - ~  

~ i = 1  i 
(2) 

with similar expressions for the other pairwise probabilities. Then equation 
(1) becomes 

P ( a + ,  b + ) ~ < P ( a + ,  e + ) + P ( c + ,  b + )  (3) 
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Table I. All Eight Combinations of Spin-l/2 Particle Types (a + ,  b + ,  c + ) 
Emitted from a Source According to the Hidden-Variable Model a 

Population Particle 1 Particle 2 QM Probability 

N 1 (+  + + )  ( -  - - )  l cos  ~ (1 +cos  0~) 
N 2 (+  + - )  ( - -  + )  l c o s c ~ ( - 1  + c o s t  0 
N 3 ( + - - + )  ( - - + - - )  lsin2 ~ 
N4 ( - - + + )  ( + - - )  Jsin2 a 
N5 (+  - - - - )  (-- + + )  �88 sin2 ~z 
N 6 (-- + --)  (+  -- + )  lsin2 
N 7 ( - - - -  + )  (+  + --)  �88 (--1 +COSC 0 
N s ( - - - - - - )  (+  + + )  �88 c~ (1 +cos  c~) 

a The hidden-variable model assumes spin-l/2 particles of type ( a + ,  b_+, c_+) are emitted 
from a source. The table lists all eight combinations of (a+,b_+,e_+).  The notation 
(+  + - ) ,  etc., means that the spin along the a and b axes is measured to be + ,  but along 
the c axis, - .  To ensure zero total angular momentum, a particle 1 of the type (+  + - )  
must be accompanied by a particle 2 of the type ( - - + ) .  The last column lists the 
calculated quantum mechanical probability for measuring a given particle type. 

which is one of the Bell inequalities. Note that the inequality results from 
the assumption that the P's are nonnegative. 

It is easy to show that these inequalities violate the assumptions of 
quantum mechanics. Let us write the quantum mechanical projection 
operator in the form (Schiff, 1968) 

H(a_+)= �89 +_~.a) (4) 

where ~. a is a 2 x 2 matrix and ~ represents the Pauli spin matrices. The 
quantum mechanical probability of finding particle 1 in the + state is 
1 Tr II(a) = 1/2. Similarly, the joint probability P ( a + ,  b _  ) is 

P ( a + ,  b •  �89 Tr{II(a)  H(b-}-)} 

= 1(1 + a ' b )  (5) 

with similar expressions for the other joint probabilities. 
If, for simplicity, we choose a, b, e to lie in a plane with a- e = b" c = 

cos 2c4 a" b = cos 4c4 then equation (3) becomes 

sin 2 2c~ ~< 2 sin 2 ~ (6) 

which is in general not true. Thus, quantum mechanics violates Bell's 
inequalities. 



Bell's Inequalities 1081 

3. QUANTUM MECHANICAL GENERALIZATION 

Everything we have done thus far is standard. The usual statement is 
the one mentioned above: the difference between the hidden variables 
approach and quantum mechanics is that a local hidden variables theory 
assumes that the particles' spin states have some definite probability, such 
as given by equation (2), whereas quantum mechanics makes no such 
prediction--a given particle's spin is in a superposition of states. We now 
demonstrate that this is not entirely the case. 

Let us form probabilities of the type P(a2, b#, ev), where 2, #, v = _+I 
in conformity with our previous notation. These joint probabilities repre- 
sent correlations between three "simultaneous" measurements on two 
particles. Of course, this is not physically possible in the systems we have 
been discussing; however, this objection will be answered below. 

There are several possible rules for forming the probabilities P. For 
instance, we may write 

1 Tr{H(a) Yl(b) H(c)} (7a) P(a2, b/~, ev )=~  

o r  

1 Tr{n(a) n(b) n(e) + n(c) n(b) n(a)} P(a2, b#, ev) = (7b) 

o r  

P(a2, b/~, cv) = ~ Tr{FI(a) If(b) FI(e) + permutations } (7c) 

Equation (7a) gives a complex result due to the complex off-diagonal 
elements in the Pauli matrix a~. This problem is eliminated by (7b), 
although the sum is not symmetric in the arguments. The most natural 
generalization of equation (5) is (7c), which is both symmetric in the 
arguments and gives a real result for P. (In fact, it is not important which 
version one chooses; when one sums over the third argument, as will be 
done below, the result is always real.) 

Choosing (7c) as the algorithm for computing the triple probabilies, 
we get 

P(a2, b#, cv) = ~[1 + 2/m" b + 2va -e +/~vb" c] (8) 

Working this out with a" e = b" e = cos 2~ and a" b = cos 4c~ as before gives, 
in obvious notation, 
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P ( +  + + ) = P ( - -  - ) =  1cos e (1 +cos  e) 
(9) 

P ( +  + - ) = P ( - - -  + ) =  �88 e ( - 1  +cos  e) 

p ( + -  + ) = p ( -  + - - ) =  �88 2 
(lo) 

p ( + - - ) = p ( -  + + ) = � 8 8  

For convenience we list these probabilities in the last column in Table I. 
The first thing one notices about the above P is that two of them can 
become negative. This might cause one to reject them as nonphysical. We 
discuss this matter in more detail below. For now we note that the eight 
P d o s u m t o  1. 

As before, one wants for the EPR experiment the pairwise probabilities 
P(a, b), etc. To get them we add the P(a, b, e)'s from Table I that corre- 
spond to the previous Ni; then the Bell inequality (3) becomes 

0~<�89 c~ ( - 1  + c o s , )  (11) 

This addition has summed over the third argument in the new P(a, b, e)'s 
and reduced them to P(a, b)'s. With the half-angle formula 2 sin 2 (0~/2)= 
1 - c o s  c~, equation (10) reduces to the usual quantum mechanical result 
(6). 

Thus we see that quantum mechanics does indeed predict a set of 
probabilities (9) in exactly the same way as do hidden variable theories. 
When the summation is carried over the third argument, the usual quan- 
tum mechanical relationships for two-particle correlations are recovered. 
Due to the fact that the third argument disappears in this process, the 
"nonphysical nature" of the P(a, b, e) becomes irrelevant. 

One might object that the result depends on which of the rules (7) is 
chosen to form the P's. However, once the sum over the third argument is 
carried out, all the rules give the same answer. For example, the imaginary 
term in P(a, b, e) resulting from rule (7a) is Tr 2#v(~. a) (a .  b)(~. e). When 
all the P's for Table I are computed and summed for the Bell inequality, all 
these terms cancel out pairwise due to the permutations of sign (2#v). 

Consequently, nothing we have done is outside the domain of quan- 
tum mechanics; the only initially strange aspect of the entire procedure is 
that the P's are not positive definite. 

4. SPIN-1 CASE 

A second objection that might be raised is that the procedure just 
outlined only works for the spin-l/2 case. This is not true. We shall now 
demonstrate the procedure for spin 1, a procedure that can be generalized 
tO arbitrary spin. 
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Unlike the spin-l/2 case, where there were eight possible spin com- 
binations, the spin-1 case has 27, here listed in Table II. The possibility of 
a zero spin projection on the a, b, c axes precludes the writing of the usual 
Bell inequalities. For instance, if we formed the inequality (3) with values 
from Table II, we would get 

? 
N3 + Ns + N23 <<. N2 + Ns + N22 + N3 + N7 + N25 (12) 

which is not generally valid. (Note that this has nothing to do with quantum 
mechanics or hidden variables; it is a mere result of combinatorics.) 

Triangle-type inequalities that hold for the spin-1 case, however, can 
be found. If we define 

P ( a , b ) = P ( S l . a =  + , S 2 . b =  + ) + P ( S I ' a =  + , S 2 " b = 0 )  

+ P ( S ~ . a = O ,  S2"b=  - )  (13) 

with analogous expressions for P(a, c) and P(a, b), then valid extensions of 
the Bell inequalities are 

P(a, b) ~< P(b, c) + P(e, a) (14a) 

P(b, c) ~< e(a, b) + P(e, a) (14b) 

P(c, a) ~< P(a, b) + P(h, c) (14c) 

Note that since each of the P's contains three terms, these inequalities 
each involve nine of the terms in Table II. Furthermore, to obtain these 
expressions one must make use of the fact that angular momentum is 
conserved. For instance, (14a) reduces to the expression 

P ( -  + - ) + P ( + - - ) ~ < P ( -  + + ) + P ( + -  + ) +  (otherP's) 

However, to ensure zero total angular momentum, P ( -  + - ) = P ( +  - + ) 
and P( - + + ) = P( + - - ). Thus the inequality is valid. 

To check whether the inequalities (14) are violated by quantum 
mechanics, one must now compute the 27 quantum mechanical 
probabilities associated with the 27 N i. This is done by the same method 
of Section 3. For spin-1 particles, however, the projection operators are 
formed from the 3 • 3 angular momentum matrices S analogous to the 
Pauli matrices (Schiff, 1968). In this case the projection operators can be 
written 

FI(a+ ) = �89 a(1 + S-a)  (15a) 

H(a-)= � 8 9  1) (15b) 

H(a0) = 1 - (S" a) 2 (15c) 
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Combinations of Spin-1 Particles Emitted from a Source According 
to the Hidden-Variable Model a 

Particle 1 Particle 2 QM Probability 

NI ( + + + )  ( - - - )  

N2 ( + + - )  ( - - + )  

N3 ( + - + )  ( - + - )  

N 4 ( - + + )  ( + - - )  

N5 ( + - - )  ( - + + )  

N6 ( - + - )  ( + - +  

N7 ( - - + )  ( + + - )  

N8 ( - - - )  ( + + + )  

N9 (++0) ( - - 0 )  
Nxo ( + 0 + )  (--0--)  
Nll (0 + + ) ( 0 -  - ) 
Nt2 (+00)  ( - 0 0 )  
N13 (0+0) (0 -0)  
NI4 (004-) (00--)  

N15 (0 0 0) (0 0 0) 

N16 (00--) (00+)  
N~7 (0--0) (0+0) 
N18 (--00) (+00)  

N19 (0-- --) (0+ +)  
N2o ( - 0 - )  ( + 0 + )  

N21 (-- --0) (+ +0) 

N22 ( + 0 + )  ( - -0+)  
N23 (+ --0) (-- +0) 

N24 (0 + -- ) (0-- + ) 

N25 (0 -- + ) (0 + -- ) 

N26 ( - -0+)  (+0- - )  
N27 ( -  +0) (+ --0) 

~{A + B +  C + A 2 + B 2 +  C 2 

+ AB + AC + B C - A B C }  
I { A - B - C + A Z + B Z + C 2  

- A B - A C +  B C - A B C }  
~ { - A - B + C + A Z + B 2 + C 2  

+ A B -  A C -  B C -  ABC} 
~ { - A  + B - - C  + A2 + B2-t-C2 

-- AB + AC--  B C -  ABC} 

~ { - - A + B - C + A Z + B 2 + C  2 

- AB + A C -  B C -  ABC} 

) ~ { - A - B + C + A 2 + B 2 + C  2 

+ A B -  A C -  B C -  ABC} 

~ { A -  B - C  + AZ + B2 + C ~ 

- AB--  AC + B C -  ABC} 
~ { A + B + C + A  2 + B 2 + C  2 

+ AB + AC + B C -  ABC} 
~{1 +A - O  2 -- C 2 - B C + A B C }  

~{l  + C - A Z - B Z - A B +  ABC} 

6 { I + B - A  2 -  C 2 - A C  + ABC} 

~{C2-ABC} 
~{A2-- ABC} 

�89 

~{A2-  ABC} 

~{C2-A~C} 
1{B2 - ABC} 

~{1 + B - A  z -  C 2 - A C +  ABC} 

6 { I + C - A Z - B 2 - A B + A B C }  

6 { I + A - B  2 -  C 2 - B C  + ABC} 

~ { 1 -  C - A  2 - B  z + AB+ ABC} 

4 { 1 -  A -  82-C2 + BC + A~C} 
~{ I - -  B -  A 2 -  CZ + AC + ABC} 

4 { 1 - B - A Z - C 2 + A C + A B C }  

~ { 1 - C - - A 2 - B 2 + A B + A B C }  

4 { 1 - A - B  2 - C  2 + BC + ABC} 

aThe same as Tablel, except for spin-1 particles. In this case, +, - ,  or 0 spin may be 
measured along any of the axes and there are 27 possible combinations. We use the following 
shorthand: A -= a. b; B ~- b. c; C ~ a. c. 
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The probabilities are computed by rule (7a) (here there are no 
complex terms) and are listed in the last column of Table II. Finally, 
assuming the same geometrical configuration as before, summing over the 
third argument gives the Bell inequality (13a), which reduces to 

0~<6 cos 4 ~ - 7  cos 2 ~ - 2  cos ~ + 3  (16) 

This expression is violated for values of cos ~ above about 0.611. 

5. INTERPRETATION AND CONCLUSIONS 

We have shown that, although hidden variable theories predict a set 
of definite probabilities for spin measurements in an EPR-type experiment, 
quantum mechanics does also. Moreover, the probabilities it predicts are 
unambiguous because the rules available for calculating the probabilities 
all give the same final result; this result violates Bell's inequalities. 

The obvious difference in the two procedures is that ours produces 
P(a, b, e)'s that are non positive definite. This, however, seems to us more 
a semantic difficulty than a real one. To actually measure the P(a, b, c) 
would require three "simultaneous" measurements, which is not possible in 
a system with two particles when only one measurement on each particle 
is allowed. The P's should perhaps not be termed probabilities, but rather 
"inferred probabilities" or "master distributions" from which the actual 
pairwise correlations are obtained. Since the P(a, b, c) are not what is 
actually being measured, one should not worry about whether they are 
positive definite or not as long as they lead to physically valid predictions 
for measured quantities. 

By the same token, the standard derivation of Bell's inequalities 
(Section 2) also assumes a P(a, b, c) and the correlations must again be 
taken pairwise. 

Thus what we have done is completely analogous to the hidden 
variable case. 

Given the exact analogy between the two procedures, quantum 
mechanics and hidden variable theories are placed on a more nearly equal 
footing. From this perspective, one could regard the usual hidden-variable 
result as merely the wrong answer to a quantum mechanical problem; it 
is not surprising that a set of non-quantum mechanical rules gives a 
non-quantum mechanical result. By the same token, the view that quantum 
mechanics represents a nonlocal theory while local hidden variables 
represents a local theory also loses much of its force. "True beauty," it is 
said, "is always fresh." Quantum mechanics is thus truly beautiful. 

902/32/7-2 
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N O T E  A D D E D  I N  P R O O F  

Since submit t ing this work,  we have discovered that  others have 
considered negative probabil i t ies as an "ou t"  to the E P R  paradox.  (See 
Miickenheim, W., et al. (1986), Physics Reports,  133, 337.) 

Also, before rejecting negative probabil i t ies  out  of hand,  one should 
consider other  "unreal"  quanti t ies in physics: x f ~ ,  imaginary  t ime and 
the wave function ~b itself. Fur thermore ,  there was no a priori reason 
negat ive 'probabi l i t ies  should have made  the E P R  pa radox  vanish. 
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